Implementing a Hash Table: A Comprehensive Guide to Handling Collisions
Learn how to effectively handle collisions in hash tables and improve the performance of your applications. This post provides a detailed guide on implementing hash tables, including code examples, practical tips, and best practices for handling collisions.

Introduction
Hash tables are a fundamental data structure in computer science, used for storing and retrieving data efficiently. They work by mapping keys to indices of a backing array using a hash function, allowing for fast lookups, insertions, and deletions. However, when two keys hash to the same index, a collision occurs, and resolving these collisions is crucial for maintaining the performance and integrity of the hash table. In this post, we will explore the different techniques for handling collisions in hash tables, including their strengths and weaknesses, and provide code examples to illustrate each concept.
Understanding Hash Tables
Before diving into collision resolution, let's review the basics of hash tables. A hash table consists of a backing array, a hash function, and a set of key-value pairs. The hash function maps each key to an index of the backing array, where the corresponding value is stored.
Hash Function
The hash function is a critical component of a hash table, as it determines the distribution of keys across the backing array. A good hash function should have the following properties:
- Deterministic: Given a key, the hash function should always return the same index.
- Non-injective: Different keys can hash to the same index (collision).
- Fixed output size: The output of the hash function should always be the same size, regardless of the input size.
Here's an example of a simple hash function in Python:
1def hash_function(key): 2 """ 3 A simple hash function that returns the sum of the ASCII values of each character in the key. 4 """ 5 return sum(ord(c) for c in key) % 10
Backing Array
The backing array is the data structure that stores the key-value pairs. The size of the backing array is typically a power of 2, as this allows for efficient indexing and resizing.
Collision Resolution
When a collision occurs, the hash table must resolve it to maintain its integrity. There are several techniques for resolving collisions, each with its strengths and weaknesses.
Collision Resolution Techniques
1. Chaining
Chaining involves storing a linked list of key-value pairs at each index of the backing array. When a collision occurs, the new key-value pair is appended to the linked list.
Example Code
1class Node: 2 def __init__(self, key, value): 3 self.key = key 4 self.value = value 5 self.next = None 6 7class HashTable: 8 def __init__(self, size): 9 self.size = size 10 self.table = [None] * size 11 12 def _hash(self, key): 13 return hash_function(key) 14 15 def insert(self, key, value): 16 index = self._hash(key) 17 if self.table[index] is None: 18 self.table[index] = Node(key, value) 19 else: 20 node = self.table[index] 21 while node.next: 22 if node.key == key: 23 node.value = value 24 return 25 node = node.next 26 if node.key == key: 27 node.value = value 28 else: 29 node.next = Node(key, value) 30 31 def get(self, key): 32 index = self._hash(key) 33 node = self.table[index] 34 while node: 35 if node.key == key: 36 return node.value 37 node = node.next 38 return None
Advantages and Disadvantages
Chaining has several advantages, including:
- Easy to implement
- Good cache performance
- Handles collisions well
However, chaining also has some disadvantages:
- Can lead to poor performance if the linked lists become too long
- Requires additional memory to store the linked lists
2. Open Addressing
Open addressing involves probing other indices in the backing array when a collision occurs. There are several probing techniques, including linear probing, quadratic probing, and double hashing.
Linear Probing
Linear probing involves probing the next index in the backing array when a collision occurs. If the next index is also occupied, the probing continues until an empty slot is found.
Example Code
1class HashTable: 2 def __init__(self, size): 3 self.size = size 4 self.table = [None] * size 5 6 def _hash(self, key): 7 return hash_function(key) 8 9 def insert(self, key, value): 10 index = self._hash(key) 11 while self.table[index] is not None: 12 if self.table[index][0] == key: 13 self.table[index] = (key, value) 14 return 15 index = (index + 1) % self.size 16 self.table[index] = (key, value) 17 18 def get(self, key): 19 index = self._hash(key) 20 while self.table[index] is not None: 21 if self.table[index][0] == key: 22 return self.table[index][1] 23 index = (index + 1) % self.size 24 return None
Advantages and Disadvantages
Linear probing has several advantages, including:
- Easy to implement
- Good cache performance
However, linear probing also has some disadvantages:
- Can lead to clustering, where groups of occupied slots form
- Can lead to poor performance if the backing array becomes too full
3. Double Hashing
Double hashing involves using a second hash function to probe other indices in the backing array when a collision occurs.
Example Code
1class HashTable: 2 def __init__(self, size): 3 self.size = size 4 self.table = [None] * size 5 6 def _hash1(self, key): 7 return hash_function(key) 8 9 def _hash2(self, key): 10 return 1 + hash_function(key) % (self.size - 1) 11 12 def insert(self, key, value): 13 index = self._hash1(key) 14 probe = self._hash2(key) 15 while self.table[index] is not None: 16 if self.table[index][0] == key: 17 self.table[index] = (key, value) 18 return 19 index = (index + probe) % self.size 20 self.table[index] = (key, value) 21 22 def get(self, key): 23 index = self._hash1(key) 24 probe = self._hash2(key) 25 while self.table[index] is not None: 26 if self.table[index][0] == key: 27 return self.table[index][1] 28 index = (index + probe) % self.size 29 return None
Advantages and Disadvantages
Double hashing has several advantages, including:
- Reduces clustering
- Improves performance
However, double hashing also has some disadvantages:
- More complex to implement
- Requires additional computation for the second hash function
Common Pitfalls and Mistakes to Avoid
When implementing a hash table, there are several common pitfalls and mistakes to avoid:
- Poor hash function: A poor hash function can lead to poor performance and collisions.
- Insufficient backing array size: An insufficient backing array size can lead to poor performance and collisions.
- Inadequate collision resolution: Inadequate collision resolution can lead to poor performance and data loss.
Best Practices and Optimization Tips
When implementing a hash table, there are several best practices and optimization tips to follow:
- Use a good hash function: Use a hash function that is deterministic, non-injective, and has a fixed output size.
- Choose the right backing array size: Choose a backing array size that is a power of 2 and sufficient for the expected number of key-value pairs.
- Implement efficient collision resolution: Implement an efficient collision resolution technique, such as chaining or open addressing.
- Use caching: Use caching to improve performance by reducing the number of disk accesses.
Conclusion
In conclusion, implementing a hash table requires careful consideration of the hash function, backing array size, and collision resolution technique. By following best practices and optimization tips, developers can create efficient and effective hash tables that meet the needs of their applications. Remember to avoid common pitfalls and mistakes, such as poor hash functions, insufficient backing array sizes, and inadequate collision resolution. With practice and experience, developers can master the art of implementing hash tables and create high-performance applications.